
FASTER toolchain: Reconfiguration
Aware Mapping!

Riccardo Cattaneo, Gianluca Durelli, Christian Pilato,!
Marco Rabozzi, Fabrizio Spada, Alberto Scolari, !

Marco Domenico Santambrogio and Donatella Sciuto!
!

Politecnico di Milano!
Dipartimento di Elettronica, Informazione e Bioingegneria!

Milano, IT!
!

1

Politecnico di Milano
Aug 29, 2014, Milano, IT!

2

Riccardo Cattaneo!
- 2nd year PhD student @ NECSTLab!
- Reconfigurable architectures for HPC
systems!
- Currently working on FASTER and
exaFPGA projects!

Hi!!

3

What is this?!

A necessary premise: the FPGA / 1

•  What is an FPGA?

▪ FPGA: Field Programmable Gate Array

▪  It is an hardware device on which it is possible to configure and

reconfigure an application specific digital (potentially, mixed
signal) circuit

▪  It is typically designed as a non homogeneous grid of
interconnected components

•  look-up tables (LUTs), block rams (BRAMs), digital signal processors
(DSPs), switch matrices, input/output blocks (IOBs) etc…

▪ Roughly speaking, the interconnection among these components
can be programmed and reprogrammed in order to realize a
specific function (in the form of a digital circuit)

▪ Flexibility at hardware speed (not quite ASIC, however!)

▪ Parallelism at hardware level (depending on application)

•  Hardware is “intrinsically” running in parallel on the device

▪ Run-time reconfiguration potentially allows for extremely

efficient and flexible designs

4"

5

A necessary premise: the FPGA / 2

▪ The device is used in many different contexts

•  Telco (digital circuits built around high speed

transceivers for high speed digital communications)

•  Finance (real time estimation of the risk of a

portfolio of financial instruments)

•  Hardware and computer engineering (emulation

of hardware components, in hardware)

•  Scientific computing (among the others

acceleration of physical systems in geology, 3D
computer graphics rendering)

•  Aerospace/Defense (missiles, avionics, MILCOM)

•  Medical (MRI, PET, Intuitive Systems’ Da Vinci

minimally invasive surgery system)

5"

6

A necessary premise: the FPGA / 3

•  Working with an FPGA: a rough design flow

▪ The hardware engineer describes the required functionality in a

Hardware Description Logic (HDL) language

▪ The functionalities are combined in larger functionalities

▪ This description is synthesized (~compiled) into a digital circuit

▪ This circuit is realized by means of

•  Adequately configured logic blocks…

•  …connected among the others via programmable interconnects…

•  …and connected to the outside world via I/O blocks

6"

8

A necessary premise: the FPGA / 4
•  The foreseeable future of FPGA: highly coupled heterogeneous system

▪ Zynq Platform: ARM Dual-Cortex A9 (ASIC!) cores on-die tightly coupled with a 7series
(i.e.: the currently latest tech) programmable logic

▪ High speed, low latency reconfigurable interconnect

AVNet ZedBoard

(Zynq7000-based dev board)

Coarse Grain overview of Zynq7000 All-Programmable SoC

7"

•  A little premise!
•  Problem statement & opportunities!
•  The FASTER approach!

•  Motivation!
•  Methodology and framework overview!

•  ACO-based mapper!
•  Static scheduler and runtime manager!
•  Floorplacer!
•  Code generation!

•  Experiments and results!

8

•  In the race towards power efficiency, Reconfigurable
Hardware has recently become an attractive platform
for the development of custom, application-specifc
hardware accelerators.!

While attractive under the performance point of view,
these accelerators and the relative architecture on
which to execute them are but easy to develop,
verify, and run."

For this reason, the reference reconfigurable hardware
device, namely, Field Programmable Gate Arrays
(FPGA), is still not-so-commonly employed in
production systems. !

9

Problem statement / 1!

•  Additionally, FPGAs are not only reconfigurable at
design-time, but also as run-time, thanks to Partial and
Dynamic Reconfiguration (PDR)."

However, PDR is still an untamed feature, mostly due to
the difficulties experienced during design time by
designers and requirement for an early planning of
its employment in a reconfigurable design."

10

Problem statement / 2!

•  Hardware Description Languages (HDLs) are not (l)user-friendly!
their semantics is totally different than that implied by common programming languages such as C/

C++"
this means that the learning curve is anything but steep"

An FPGA engineer must take into account multiple constraints at different
abstraction levels!

HDL: how to write good hardware code"
From HDL to FPGA: lots of tools, each of which with lots of degrees of freedom impacting on the

final design"
SW: tedious task to write “bridge” code to interface software and hardware part of the system, very

error prone"
Application-level: how to effectively express the application so that hardware implementation is

accurate and possibly straightforward"
Verification: complex debugging tools spanning the whole technology stack are not really mature"
Modeling: it is still difficult to model these systems for early validation and performance

characterization of a specific design"
Technology jails: FPGA vendors force designers to be expert about their technology to effectively

exploit them but don’t allow interoperability (but for a subset of the HDL languages)"
Underlying issue: CS education is not very hardware-friendly, ECE education is not

very software-friendly"
Benefits lying in this gap are not exploited yet"

11

Critical Factors!

FASTER aims at facilitating the design of a
reconfigurable system by providing useful abstractions

and an easy-to-use production toolchains to rapidly
explore the impact of PDR on an FPGA-based

computing system.!

12

FASTER!

13

Partners!

•  A little premise!
•  Problem statement & opportunities!
•  The FASTER approach!

•  Motivation!
•  Supported platforms and test cases!
•  Methodology and framework overview!

•  ACO-based mapper!
•  Static scheduler and runtime manager!
•  Code generation!

•  Experiments and results!

14

15

System Analysis and Design

•  The starting point: the application to be ported on hardware

•  Application Analysis

▪  Identification of components by means of software analysis

•  Kernels, static affine nested loop-based programs (SANLPs), adequate graph-based

representations

▪ Estimation of the performance and the constraints associated to

those components on the target reconfigurable system

•  Execution time, floor planning and placement, power consumption…

•  FASTER approach

▪ Automatic HW/SW partitioning

▪ Automatic mapping of tasks to components

▪ Automatic identification of partial reconfiguration

opportunities

▪ Automatic identification of reconfigurable areas

•  Refinement/Code generation step: platform specifc
backends

▪ generation of vendor specific project to interface with their

toolchain

16

FASTER: overall methodology

17

FASTER: overall framework

•  Inputs:

▪  Information about target device

(.XML)

▪ Application source files (.C)

•  Decision Making (Exploration):

▪ App analysis

▪ Task/Dataflow graph generation

▪ Library generation

▪ Mapping, Scheduling,  

Floor planning

▪ Architectural modification

•  Refinement (Evaluation):

▪ Specification of the platform

▪ Generation of the SW code

•  Output:

▪ Project files ready for  

synthesis with back-end tools

18

FASTER: input flow

User inputs the
application’s taskgraph,
sw and hw
implementations (modes
of execution with different
performance profiles), the
architectural template,
and the design space
exploration parameters!

19

XML Exchange Format

•  The entire project is represented through an XML file

▪ Architecture: components’ characteristics (e.g.,

reconfigurable regions), …

▪ Applications: source code files and profiling information

▪ Library: task implementations with the characterization

(time, resources, ...)

▪ Partitions: task graph, mapping and scheduling, …

•  It allows a modular organization of the framework

▪ Phases can be applied in any order to progressively

optimize the design

▪ Designer can perform as many iterations as he/she wants

to refine the solution

•  Specific details of the target architecture are taken
into account only in the refinement phase

▪  Interactions with backend tools

20

Task Graph and Library Generation

•  The application is written in C code and represents a set of
interacting tasks

▪  Interacting here means that each function produces and

consumes data for other functions in the application

•  Application source code is analyzed to extract the task graph

and relevant information about the tasks based on pragma
annotations

▪ Kernel tasks (compliant with OpenMP 3.0)

▪ Memory accesses and related access patterns

•  Mercurium+LLVM compiler to extract each task DFG

▪ Estimation of required resources (including bit-width analysis)

▪  Interaction with HLS synthesis tools for real values

•  Code rewriting for improving the synthesis (e.g., SystemC backend)

•  Generated implementations are then stored in the XML file to

offer opportunities to the mapping phase

▪ Possibility to perform multi-objective design space exploration

to generate alternative cores

C.Ciobanu et al. SAMOS’13

C. Pilato et al. JSA’08

Library Generation!

Politecnico di Milano/Imperial College of London joint effort to integrate High Level Analysis
techniques into the toolchain!

HLA XML MAP

IMP: implementations
characterization

PDM: mapping phase
using IMP characterization

Application
Task graph

Dataflow Graph Mapping

Library: collection of software and hardware implementations, one or
more per task of the original task graph!
We need to know how these implementations perform: need for an
estimate of resource consumption per each task !
In this work it is done via High Level Analysis, a fast analytic approach
to estimate resources consumption of (a-fair-subset-of-) C functions !

21

Mapping: overview!

Based on a metaheuristic iterative algorithm to solve a
multiobjective optimization problem

Objectives: function of occupation area,
execution time, power, number of

reconfigurations etc...
T1

T2 T3 T4

T5

Architecture
XML

Mapper Mapping
Iterative, multi objectives:
-  Runtime
-  Power
-  Area
-  …

Convergence

Process of assigning each task in the original task graph
to the “best” processor and implementation in the system

Library
XML

Application’s
Taskgraph

22

23

DORIGO,	
 Marco;	
 BIRATTARI,	
 Mauro.	
 Ant	
 colony	
 op8miza8on.	
 In:	
 Encyclopedia	
 of	
 Machine	
 Learning.	
 Springer	
 US,	
 2010.	
 p.	
 36-­‐39. 	
 	

Design Space Exploration!

24

Cri8cal	
 step	

	

Quality	
 of	

solu8on	
 depends	

on	
 previous	
 steps	

of	
 the	
 ACO	

algorithm	

Mapping, Scheduling, and
Floorplanning"

Design Space Exploration!

25

DORIGO,	
 Marco;	
 BIRATTARI,	
 Mauro.	
 Ant	
 colony	
 op8miza8on.	
 In:	
 Encyclopedia	
 of	
 Machine	
 Learning.	
 Springer	
 US,	
 2010.	
 p.	
 36-­‐39. 	
 	

Design Space Exploration!

Solu8on:	

mapping,	

scheduling,	

floorplanning,	

adequate	

architecture	

Mapping, Scheduling, and
Floorplanning"

26

DORIGO,	
 Marco;	
 BIRATTARI,	
 Mauro.	
 Ant	
 colony	
 op8miza8on.	
 In:	
 Encyclopedia	
 of	
 Machine	
 Learning.	
 Springer	
 US,	
 2010.	
 p.	
 36-­‐39. 	
 	

Design Space Exploration!

Evolu8on:	
 Ant	
 Colony	

Op8miza8on	

	

Meta	
 Heuris8c	

Op8miza8on	
 scheme,	

viable	
 also	
 for	
 non-­‐linear	

objec8ve	
 func8ons/
complex	
 design	
 spaces	

Mapping, Scheduling, and
Floorplanning"

Reconfiguration-awareness!

Reconfiguration-related specifics:!
•  at the mapping level!

•  notion of resource re-usage!
•  assignment of multiple implementations to single regions must not violate
global resource usage constraint, so as to generate only feasible solutions!
•  in the heuristics, do not allow to use too many logic resources too early in
the mapping process to allow for potentially late reconfigurations to occur!

•  at the scheduling level!
•  naïve first come first serve, to estimate the execution time of a given
mapping (trading off accuracy for algorithm execution time)!
•  take into account the time required to reconfigure a module into an other!
•  take into account communication tasks also between successive
reconfigurations!

27

Premise: what is ACO?!

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE transaction on Systems, MCn,
and cybernetics-Part B: Cybernetics, 26(1), 29–41. doi:10.1109/3477.484436	

Ant Colony Optimization
Metaheuristic Optimization Algorithm based on the ant colony metaphor

28

Choice of task

Choice of processor
and implementation

Evaluation of solution

HLA produces estimates of the
requirements of the implementations

Local search

Global search

Iterative
(K generations)

Mapping: details!
NP-Hard problem[1]. We approached its solution with ACO.

Evolution of next generation
[1] Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for

resource-constrained project scheduling. IEEE Transactions on Evolutionary
Computation, 6(4), 333–346. doi:10.1109/TEVC.2002.802450"

Scheduling - Execution time

29

￼

●  Selection of task
–  Assign a high value to lower mobility, lower average runtime

●  Selection of processor and implementation
–  Given an implementation

•  If software, assign a high value to this choice if
–  the processor with least average assigned mobility (averaged

over previously assigned tasks)
•  If hardware, choose

–  If IP core, assign a high value to this choice if
»  the implementation implements a lot of tasks (w.r.t. others)
»  average assigned mobility is low

–  If FPGA, assign a high value to regions
»  that are assigned a low average mobility (w.r.t. others)
»  whose increase in area consumption after the association

of this implementation to that region is limited w.r.t. the
advancement of the mapping phase

»  assign 0 to those choices that lead to area constraint
violation

Mapping: heuristics!

30

Scheduling / idea!

31

Task	

Data	
 	

Communica8on	
 Applica8on’s	
 	

Taskgraph	

	

(a.k.a.	
 the	

workload,	
 	

the	
 applica8on)	

32

Data	
 read	
 task	

Data	
 write	
 task	

Split	
 	

communica8ons	
 	

tasks	
 	

Implemented	
 in	
 any	
 custom	
 way	
 –	
 we	
 support	

two	
 communica8on	
 architectures	

Scheduling / idea!

33

Introduc8on	
 of	
 	

Reconfigura8on	
 task	

	

Correctness	
 maintained	

Scheduling / idea!

GANTT CHART OUTPUT EXAMPLE

34 61

Example Gantt Output

Floorplanning!

35

Mapping, Scheduling, and
Floorplanning"

Goal:	
 to	
 automa8cally	

find	
 reconfigurable	

regions’	
 coordinates	
 in	

FPGA	

Mapping, Scheduling, and
Floorplanning"

Floorplanning / idea!

36

Floorplanning / idea!

•  Implemented as a Mixed Integer Linear
Program (MILP)1!

•  Automatically computes reconfigurable regions’
geometric bounds!
•  Required by the PlanAhead flow!

•  Specifically aimed at reconfigurable systems
employing Partial and Dynamic Reconfiguration!

•  Feedback to DSE: whether the computed
solution is floorplannable!

•  More on this in the next talk!

37

Backend!

•  Backend generates the
runtime systems!
–  Scheduler!
–  Reconfiguration manager!

•  Backend generates the
platform!
–  However, in a non-machine

readable format!
–  .mhs/.prj file compiled by

hand, for now!
•  Results are from actual

execution on Zedboard
(Zynq-7000 based)!

•  A little premise!
•  Problem statement & opportunities!
•  The FASTER approach!

•  Motivation!
•  Supported platforms and test cases!
•  Methodology and framework overview!

•  ACO-based mapper!
•  Static scheduler and runtime manager!
•  Code generation!

•  Experiments and results!

38

Experimental evaluation!

Application - synthesized DAGs with 100 tasks, irregular
topology (most complex case), many branches!
!
Architecture - one generic processor, one reconfigurable
area divided in up to 30 reconfigurable regions
(architectural template which can be adequately modified)!
!
Library - each task is assigned with one to four different
available implementations (one software, 0-3 hardware with
different area/performance tradeoffs)!

39

Improvement!!

(Total execution time of the algorithm < 1h)!

Experimental evaluation!

40

Static vs Reconfigurable!
design: objective function!

1.28e-8

1e-8

Static: allocate hardware tasks as long
as you have area. Accelerate what you

can, place the rest in software.!

Reconfigurable!

Static!

Reconfigurable: allocate hardware tasks
as long as you have area. Accelerate

what you can, either reconfigure to keep
accelerating in hardware or place the

rest in software.!

Case study: 100.000 available LUTs,
100 tasks application input, 1-4 different

implementations per task !

Reconfigurable design performs better
(the higher the objective function value,

the better the design)!

Experimental evaluation!

41

ARCHITECTURES COMPARISON!

42

Light grey: architecture with static hardware accelerators + sw cores!
Dark grey: architecture with reconfigurable hardware accelerators + sw cores!
Baseline: Generic processor!
➔  Reconfigurable architecture better exploits HW resources, on average !
➔  Automatic time multiplexing of resources!

NUMBER OF TASKS ACCELERATED IN HARDWARE AT LEAST ONCE!

43

Light grey: architecture with static hardware accelerators + sw cores!
Dark grey: architecture with reconfigurable hardware accelerators + sw cores!
➔  As expected, more tasks are run in hardware than in static case!
➔  DSE automatically computes if and when to do so by keeping into account

impact of reconfiguration and communication time!

NUMBER OF RECONFIGURATIONS!

44

Only for reconfigurable architecture: as the application grows in size, the number of
reconfigurations increases as well.!
➔  Efficient exploitation of hw resources by means of reusing (again, time

multiplexing)!
➔  As makespan showed, these reconfigurations are masked (i.e.: the acceleration

they induce is larger than the cost of reconfiguration)!

Conclusions!

45

•  We presented part of the toolchain FASTER, a fully-
featured suite of tools for designing and implementing
partially reconfigurable systems!

•  We demonstrated benefits of employing PDR on
synthetic applications!

•  The system greatly enhances design productivity and
early discovery of PDR employment benefits!

GUI - DEMO!

46

47

Initialization

48

Zynq Architecture Model

49

Architecture (reconfigurable area)

50

Taskgraph

51

Library/Implementations

52

Mapped Applications

53

REFERENCE ARCHITECTURES!

54

CPU	
 RR1	

BUS	
 (AXI	
 Interconnect)	

RR2	
 RRN	

RAM	

…	

Controller	

DMA	

CPU	
 RR1	
 RR2	
 RRK	

RAM	
 Controller	

DMA	
 DMA	
 DMA	

Up	
 to	
 K	
 ports,	
 single	
 bus	
 for	
 N	
 par88ons	

…	

Up	
 to	
 K	
 ports,	
 dedicated	
 DMA	
 channel	
 per	

reconfigurable	
 region	

